活性炭的制备方法
2018-01-30 10:46:00   来源:

1 制备原料

活性炭几乎可以用任何含炭材料来制造,煤炭、石油焦、木质素、塑料类等多种多样的含碳材料均可用做制备活性炭的原料。由于煤炭资源储量丰富、便宜易得,在相当长的一段时期内,煤炭资源是我国制备活性炭的主要原料。但是煤炭是一次能源,不可再生,随着能源危机的加剧,使人们认识到可能再生资源的重要性,科研工作者利用棉花杆为原料化学活化法制备活性炭、利用竹子为原料磷酸为活化剂制备活性炭利用小麦秸秆为原料制备炭黑,还有研究者利用湿地水生植物为原料制备活性炭。

生物质资源是一种理想活性炭制备原料,它具有可再生、低污染、二氧化碳零排放等优点,同时价格较低、灰分少,且与煤炭资源相比,生物质资源形成时间短,结构疏松,具备天然的优势,因此,在燃烧和热解过程中具有自身的特点,易于形成发达的微孔,是制备活性炭的优良材料,是今后环境友好材料新技术应用的发展方向,值得进行深入研究。

生物质类资源的主要成分是纤维素、半纤维素和木质素。在热解过程中会发生分子键断裂、异构化和小分子聚合等复杂的热化学反应。纤维素在52 °C时开始热解,随着温度的升高,热解反应速度加快,到350–370 °C生物质热解分解为低分子产物;半纤维素结构上带有支链,是木材中最不稳定的组分,比纤维素更易热分解,温度为225–325°C内分解,其热解机理与纤维素基本相似。根据生成产物的不同,热解过程可以分为干燥阶段、预热解阶段、固体分解阶段和煅烧阶段:

(1)干燥阶段:该阶段温度为120—150°C,生质中的水分开始挥发,其化学组成保持不变,为吸热阶段。
(2)预热解阶段:该阶段的温度为150~275 °C,生物质发生明显的热分解反应。其化学组成开始发生变化,内部结构发生重组,如脱水、断键和自由基出现等,生物质中不稳定组分分解生成小分子化合物,如二氧化碳、一氧化碳和水等气体。该阶段也为吸热反应阶段。
(3)固体分解阶段:该阶段的温度为275~475 °C,是热解过程的主要阶段,生物质各组分发生剧烈的解聚反应,分解成单体或单体衍生物并生成大量的分解产物;其中,液体产物中含有醋酸、木焦油和甲醇等,气体产物中有CO2、CO、CH4和H2等,释放出大量的热量。
(4)焦炭分解阶段:该阶段的温度为450~475 °C,得到的产物依靠外部供给的热量继续进行燃烧,C-O和C-H键进一步断裂,释放出挥发分,使其挥发性物质继续减少,固定碳含量增加。上述的四个阶段的反应过程会相互交叉进行,界限难以明确清楚划分。

2.2活化方法

选择合适的前体材料,精确控制炭化和活化工艺步骤,即可根据特定用途调整孔结构。活性炭制备活化方法包括物理活化法和化学活化法两种,其不同之处在于制备过程中是否引入化学试剂。

物理活化法又称为气体活化法,即在973~1273 K下,水蒸气、二氧化碳和氧气等氧化性活化剂与炭化料活性点上的碳原子发生如下的水煤气反应:

一般认为,碳和水发生水煤气反应的过程机理如下:

其中,C*表示位于活性点上的碳原子,()表示处于吸附状态。

由以上反应式可看出,由于部分碳原子被刻蚀,于是形成了更多的孔隙结构,从而具有较大的比表面积。由于没有引入化学活化剂,物理活化法环境污染小,但是制备过程中,加热温度高且所需时间长,因此存在原料得率低,均匀性不好,产品吸附能力较小等缺点。

化学活化是制备活性炭广泛使用的一种方法。化学活化法是先将原料粉碎后,把活化剂与原料按照一定比例混合均匀,根据活化剂的不同,可选择性的在惰性气氛保护下加热,同步完成炭化和活化的一种方法。采用的活化剂主要有氯化锌,磷酸、碱(如氢氧化钾、氢氧化钠)、碱金属的碳酸盐等。这些化学活化剂在炭化活化过程中所起的作用目前尚不明确,普遍认为活化剂一方面作为反应物参加与原料的化学反应;另一方面,活化剂的催化作用也很重要。尽管这些活化剂在活化过程中发挥的作用可能不同,但这些活化剂可降低活化温度,具有的脱水作用可显著降低炭化活化温度。

ZnCl2法是最早的一种制备活性炭的化学活化方法,它的强脱水作用使木质素 炭化活化温度显著降低至150~300°C,并改变木质素热分解过程,抑制焦油的生成,有利于孔隙的生成。氯化锌与原料混合后,在较低温度下(200°C)会使木质纤维素润胀,并侵蚀到木质内部。由于ZnCl2沸点为732 °C,熔点为263 °C,在木质素炭化温度下(450°C)呈液态存在,因此,ZnCl2在炭内均匀分布,当用水把氯化锌洗涤去除后,就形成了发达的微细孔,但是制备过程中氯化锌的挥发,易造成严重环境污染,很多国家已经禁止利用氯化锌制备活性炭。

碱活化法是采用氢氧化钾、氢氧化钠等碱类物质,该方法最初主要是针对石油焦,但对其他如煤和果壳类作为前驱物生产活性炭也同样有效。这种方法中将碱按照一定的混合比例加入到原料中,经研磨混合均匀后,在惰性气体或者封闭系统加热至700-800 °C炭化活化,能得到比表面积在3000 m2/g左右的具有大量笼状微孔结构活性炭。碱法的活化机理,以KOH为例,可用以下反应方程式表示:

式中碱的脱水反应在500°C以下发生,水煤气反应及水煤气转移反应,都是在氧化钾作为催化剂下发生的反应。产生的二氧化碳与K2O固定为碳酸盐,因此产生的气体主要是氢气、少量的CO、CO2、CH4和焦油等。一般认为,活化过程中消耗掉的碳主要生成了碳酸钾,使产物具有较多的微孔结构㈨。氧化钾继续被氢气或碳还原生成K单质,金属钾的沸点为762 °C,因此在800°C左右活化时,钾单质的蒸气不断挤入碳原子所构成的层与层之间继续活化炭料。虽然碱法是制备高比表面积活性炭常用的方法,但是炭化活化温度较高,需要在惰性气体保护下进行。除碱本身对设备的腐蚀性强、回收困难外,还存在活化温度高、能量消耗大、生产成本高等缺点,因此实现大规模工业化生产还存在较多困难。

H3P04活化法是制备活性炭比较成熟的工艺,活化机理与氯化锌法类似,能够促进热解反应过程,降低活化温度,磷酸分布在原料内,占据了一定的位置,阻止了高温条件下颗粒的收缩,避免了焦油的形成,洗涤除去磷酸盐后,就可以得到具有发达孔隙结构的活性炭。磷酸活化法制备的产品孔径分布较宽,中孔发达,应用范围较广。磷酸法对环境污染较小,炭化活化温度低,与碱法相比对设备的要求相对较低,生产出的活性炭产品均匀稳定,沉降性能良好,可作为优良的液相吸附材料。目前,国内磷酸活化法制备木质活性炭研究重点是:(1)利用各种废弃物为原料特别是以农业废弃物如农产品加工过程中的废渣、秸杆等为原料,制备出满足不同应用需求的活性炭产品,同时实现废弃物的综合利用;(2)优化制备工艺参数,提高活性炭的质量,如添加催化剂、控制活化时间等;(3)严格控制生产过程中外来杂质的含量,以降低活性炭的灰分,如控制原料的杂质、降低水分的硬度和定期对循环磷酸进行处理。

3 加热方法

常规加热是在外部温度梯度的推动下,经过热源的传导、媒介的热传递、容器壁的热传导、样品内部的热传导等过程来完成的。因此,常规加热法存在能耗大、加热效率低和加热不均匀等缺点。微波是频率为300MHz~3000GHz的电磁波。在加热过程中,样品内的极性分子吸收微波后做震荡运动,分子之间的相互摩擦产生了热量。与常规加热方法相比,微波加热具有许多优点:选择性加热、升温速度快、加热效率高、缩短加热时间、降低能量消耗、受热加热均匀等。利用微波的加热特性,可研发出在常规加热条件下无法实现的新技术、新工艺和新产品,并实现加热过程的高效、节能。目前微波加热技术已经广泛应用于家庭、环保、材料、冶金、化工、石油和国防等领域。

基于微波加热的突出优势,许多研究者利用微波加热法制备活性炭。石河子大学的邓辉课题组对于微波法制备活性炭开展研究,取得了一系列的成果。邓辉,张根林等以棉杆为原料,磷酸为活化剂,通过微波加热法制备活性炭,在辐射时间为8 min,辐射功率为400 W时可制备出比表面积为652.8 m2/g的活性炭产品。樊希安等以椰壳炭化料为原料,水蒸气活化法,在微波加热下制备颗粒活性炭,研究发现微波功率是影响活性炭性质的最大因素,最佳制备工艺条件为辐射功率为 700 W,辐射时间为3 min,所得活性炭具有发达的微孔结构,且微孔分别均匀,制备的活性炭得率为60.8%,碘吸附值为1031 mg/g,亚甲基蓝吸附值为10.0 mL/0.1g,所需时间是传统加热方法的1/60,得率是传统方法的2倍。

特殊碳材料