在人工光合作用中,串联催化已成为一种有吸引力的方法,即通过不同位点的连续步骤促进CO2还原为高价值的多碳(C2+)产物。基于此,同济大学陈作锋教授和上海电力大学李和兴教授等人报道了一种Cu单原子(Cu SAs)在In2O3上的配位的串联光催化剂(In2O3/Cu-O3),其轨道杂化,用于在纯水中产生的化学测量O2的CO2到C2的有效转化。在不添加任何牺牲剂和光敏剂的情况下,In2O3/Cu-O3在可见光照射下的乙醇收率为20.7 μmol g−1 h−1,选择性为85.8%。
通过密度泛函理论(DFT)计算,作者研究了In2O3/Cu-O3的活性位点和串联机理,并阐明了轨道杂化相互作用与CO2RR制C2产物的关系。作者利用Cu SAs构建了三种不同构型的结构模型,其中Cu分别与In2O3的2、3或4个氧原子键合,分别模拟了2-、3-或4-配位的Cu SAs。
差电荷密度(DCD)和Bader电荷分析显示,0.6596 e−直接从In2O3/Cu-O3中的邻近原子转移到Cu SAs,导致Cu位点的电子显著积累,In位点的电子大量耗尽。Cu-O-In单元的不对称电子分布导致Cu原子周围的缺电子环境,强烈吸引CO2的孤对电子,有利于CO2的吸附。
作者将涉及12个质子-电子转移的整个CO2制乙醇反应分为三个独立但相互关联的部分:*CO的形成;C-C耦合;随后的质子-电子转移过程以产生乙醇。In2O3/Cu-O3具有两个CO2还原催化中心:Cu SAs-free In2O3域和Cu-O-In单元域。
CO的增强吸附对于实现对C2产物的高选择性很重要,因为*CO的高覆盖对于后续的C-C偶联反应至关重要。*CO在In2O3/Cu-O3和In2O3上的吉布斯自由能值表明,Cu SAs-free In2O3域和Cu-O-In单元域都有利于富集*CO覆盖,并有可能使*CO从In2O3向Cu SAs迁移。
Electronic modulation of a single-atom-based tandem catalyst boosts CO2 photoreduction to ethanol. Energy Environ. Sci., 2023, DOI: 10.1039/D3EE02643D.
-
丙烯酸异十三酯_CAS:93804-11-6
2025-06-09
-
1,1,1-三氟-2,3-二甲氧基丙烷_CAS:2163074-40-4
2025-06-09
-
1,4-二甲基吡啶-1-鎓碘化物_CAS:2301-80-6
2025-06-09
-
二氯化钌合1,4,5,8四氮杂菲_CAS:151737-11-0
2025-06-09
-
碘乙烷-D5_IODOETHANE-D5_CAS:6485-58-1
2025-04-25
-
1,4-二溴苯-D4_1,4-Dibromobenzene-d4_CAS:4165-56-4
2025-04-25
-
苯甲酰胺-15N_Benzamide-15N_CAS:31656-62-9
2025-04-25
-
苯甲醇-D5_Benzene-2,3,4,5,6-d5-methanol_CAS:68661-10-9
2025-04-25
-
溴乙烷-D5_BROMOETHANE-D5_CAS:3675-63-6
2025-04-25
-
滴滴涕-D8(DDT-D8)_2,4′-Dichlorodiphenyltrichloroethane-d8_CAS:221899-88-3
2025-04-25
-
辛酰辅酶A_Octanoyl coenzyme A_CAS:1264-52-4
2025-04-25
-
E-4-乙酰氨基-3’,4′-亚甲二氧基二苯乙烯_E-4-acetamido-3′,4′-methylenedioxydiphenylethylene_CAS:2025317-27-3
2025-04-25
-
乙基葡糖苷酸(铵盐)_ethyl glucuronide_CAS:913255-98-8
2025-04-25