咨询电话:021-58952328
钟俊教授课题组:双功能Fe2ZrO5层对氧化铁光电极光电催化性能的影响2020-02-27
▲第一作者:焦婷婷;通讯作者:钟俊 康振辉 张朵
通讯单位:苏州大学
论文DOI:10.1016/j.apcatb.2020.118768
全文速览
本文采用表面修饰的方法以 Zr-MOF(UiO-66-(COOH)2))为前躯体,在氧化铁表面首次沉积了 Fe2ZrO双功能层。Fe2ZrO既可以作为钝化层,又可以作为 Zr 源实现 Zr 掺杂,从而使得 a-Fe2O光电极的光电催化活性得到极大的改善。
研究背景
随着社会的快速发展,能源短缺与环境污染问题亟需解决,开发利用可再生清洁能源是大势所趋。利用太阳能制氢将是未来解决能源问题的有效途径之一。在众多的半导体光电催化材料中,a-Fe2O具有稳定性好、廉价无毒、来源广泛等特点。
此外,a-Fe2O具有合适的禁带宽度(2.1-2.2 eV),可以吸收利用大部分的太阳光,根据理论计算,在标准太阳光照射下,其 STH 效率(solar-to-hydrogen)可以达到 16.8 %,对应的光电流密度可以达到 12.6 mA/cm2。因此,a-Fe2O是一种很有前景的光电催化材料。然而,由于氧化铁导电性差、能带位置不合适、光生空穴传输距离短等一些自身缺陷限制了其在实际中的应用,导致其光电流密度远远低于理论计算值。目前主要是通过表面钝化、掺杂、构筑异质结等修饰方法来提高其性能。
研究的出发点
基于氧化铁存在的问题,该团队设想利用 MOFs 材料对氧化铁进行表面修饰来提高其光电催化性能。作者利用 Zr-MOFs(UiO-66-(COOH)2))对氧化铁进行表面修饰时,发现 MOFs 材料不能维持其特有结构,而是进行了热分解,并且与氧化铁相互作用,在氧化铁表面形成了一种新的 Fe2ZrO薄层。这种 Fe2ZrO薄层的发现尚属首次,它既可以作为合适的钝化层抑制光生电子-空穴的复合,又可以作为Zr源实现Zr掺杂来提高氧化铁的导电性,从而使得 a-Fe2O光电极的光电催化性能得到了显著的提升。值得一提的是,这种 Zr 处理可以同时提高光电流和降低起始电压,表现出了良好的应用潜力。
图文解析
通过高分辨 TEM 发现,与 Fe2O相比较,Fe2ZrO5-Fe2O表面有一层大约 3 nm 厚的包覆层,并且从 EDS mapping 图中可以清楚的观察到 Zr 的信号。
▲Fig.1 (a) and (b): HRTEM images of Fe2O3, Fe2ZrO5-Fe2O3, respectively. (c) Dark field TEM image and the corresponding elemental mappings of Fe2ZrO5-Fe2O3.
利用对元素化学环境敏感的同步辐射(XAS)技术表征,从 Zr 边的 XAS 谱图(Fig.2a)中可以看出相比于前驱体 Zr-MOFs 和 ZrO的谱图,Fe2ZrO5-Fe2O的谱中多了一个 B 峰,根据其特征峰的位置和形状,可以确定 ZrO32- 的形成,从而认定在氧化铁表面的包覆层是 Fe2ZrO而不是 ZrO2。EXAFS 谱图(Fig.2b)的特点也证明了 Fe2ZrO的存在。同步辐射技术的应用为揭示材料的真实结构提供了强有力的工具。
▲Fig.2 (a) XAS spectra and(b) Fourier transform of the EXAFS data of ZrO2, Zr-MOFs (UiO-66-(COOH)2) and Fe2ZrO5-Fe2O3 at Zr K-edge.
相关的电化学测试结果(Fig.3)表明,Fe2ZrO作为钝化层可以显著提升表面电荷分离效率,从而降低光生电子-空穴的复合几率,使得 a-Fe2O光电极的起始电压降低了 180 mV。从莫特-肖特基曲线可以清楚地看出 Fe2ZrO5-Fe2O中载流子浓度也有了明显的提升,说明 Zr 原子扩散到氧化铁的体相中实现了 Zr 掺杂。在表面钝化和掺杂的协同作用下,Fe2ZrO5-Fe2O光电极的光电流密度在 1.23 V vs.  RHE 为 1.65 mA/cm2,同时具有较低的起始电压。这种 Zr 处理还可以耦合 Ti 处理和 Co-Pi 表面助催化剂,其光电流可以达到 2.88 mA/cm2(1.23 V vsRHE),表现出了良好的应用潜力。
▲Fig.3(a) JV curves, (b) Charge separation efficiencies (ηsurf) and(c) Mott-Schottky plots of Fe2O3 and Fe2ZrO5-Fe2O3.(d) Photochemical stability curves of Fe2ZrO5-Fe2O3 measured at 1.23 V vs. RHE.
结论与展望
作者采用一种简便的处理方法,在a-Fe2O光电极表面首次沉积了 Fe2ZrO双功能层,它既可以作为钝化层又可以作为Zr掺杂的Zr源,使得修饰后的 a-Fe2O光电极既可以提高光电流又可以降低起始电压,取得了可观的光电催化性能,并且具有良好的稳定性。这是 Fe2ZrO修饰氧化铁光电极的首次报道。该团队的这种处理方法为之后用 MOFs 材料及其衍生物修饰光电极材料提供了一定的借鉴意义。
最新产品
园区介绍