咨询电话:021-58952328
Angew. Chem. :单颗粒等离激元增强的电化学发光2023-01-19
贵金属纳米颗粒是一类重要的电催化剂,在分析、传感、能量转换等领域有着非常广泛的应用。了解其电催化性能对于后续的催化剂设计、制备和优化意义重大。然而,贵金属纳米颗粒的个体差异对性能影响极大。理想情况下,需要在单颗粒水平上对其电催化活性进行评估。

电化学发光(ECL)是一种依赖电化学反应来激发探针分子发光的技术。贵金属颗粒可作为典型的纳米电极,对其表面的ECL信号读取与分析可有效地表征其催化性能。然而,已有的单颗粒电化学发光研究还存在颗粒定位困难、等离激元效应不明、难以高通量检测等问题。

 

 

1
作者通过纳米静电印刷方法,将纳米颗粒定位并固定于指定位置,构建了基于Au单纳米颗粒的阵列结构,并应用ECL显微镜对这些单颗粒的电化学发光进行成像。该方法成功解决了单纳米颗粒的定位问题,并可以从宽场成像中同时检测多个单颗粒信号,实现高通量测量。利用该平台,结合高分辨的结构表征,作者研究了在单颗粒水平上等离激元增强的电化学发光。

2
首先,作者通过对发光强度和颗粒尺寸的一一对应与统计,在单颗粒水平上证明了Ru(bpy)32+-TPrA体系的电致发光主要被小于40 nm的金颗粒猝灭,而被大于80 nm的金颗粒增强。这是由于小金颗粒对发光主要以吸收为主,而大金颗粒以散射为主,大金颗粒的局域表面等离激元共振(LSPR)显著增强了探针分子ECL的发射过程。

3
为进一步研究等离子激元对ECL的影响,得益于纳米静电印刷高度可控性,作者构建了包含单颗粒和多颗粒寡聚体的阵列结构,并在寡聚体上观察到了更为明显的ECL增强现象。得益于阵列的高通量特性,这一增强效果在位点统计中得到进一步证实。通过实验和仿真,作者发现金颗粒寡聚体散射峰红移,且在颗粒间隙中出现很强的局域电场耦合。这种邻近金颗粒的耦合效应极大提升了激发态Ru(bpy)32+*的总衰减速率,而金颗粒散射特性又增大了其辐射衰减的占比,即提高了其量子效率。

这种基于单颗粒阵列的ECL显微成像有望为筛选纳米粒子的电催化活性提供一个原位、可靠、高通量的表征工具。

文信息

Plasmon-Enhanced Electrochemiluminescence at the Single-Nanoparticle Level

Ying Wei, Yuchen Zhang, Jiahao Pan, Tian Chen, Dr. Xing Xing, Prof. Weihua Zhang, Prof. Zhenda Lu

Angewandte Chemie International Edition

DOI: 10.1002/anie.202214103

 

最新产品
园区介绍