首页 »
行业资讯 »
纳米材料 »
黄宏文/练成ACS Catalysis:改变Bi纳米片局部微环境,实现高选择性强酸中CO2电还原为HCOOH
电催化CO2还原反应(CO2RR)将CO2转化为高附加值的产品,并且能够减轻温室气体过量排放的危害。为了提高CO2RR的转化效率,目前的电解体系主要采用碱性或中性电解质。阴极表面的碱性环境有利于CO2活化,抑制竞争性析氢反应(HER),以及C-C偶联用于多碳合成。在中性电解质的情况下,由于CO2RR和HER的质子消耗,也可以在阴极表面局部产生高浓度的OH物种和高pH值,这与碱性体系相似。然而,碱性/中性体系的缺点也是显著的:在阴极室中,CO2分子很容易与局部/本体OH反应转化为碳酸盐,极大地消耗了CO2,降低了CO2的利用效率。当使用阴离子交换膜时,碳酸盐/碳酸氢盐从阴极到阳极的交叉会进一步降低碳效率。
此外,碳酸盐的形成亦会对CO2反应器的稳定性构成严重威胁,因为碳酸盐会堵塞气体扩散电极内CO2运输的多孔通道,加速电解质泄漏,并增加电池电阻。这些挑战严重限制了碱性/中性CO2RR系统的工业前景。
近日,湖南大学黄宏文和华东理工大学练成等采用一锅法制备了Bi纳米片状催化剂(BiNS),并在强酸(pH≤1)条件下,通过在电解液中引入K+,实现了CO2在强酸(pH≤1)条件下高效电还原为HCOOH。在−1.23 VRHE下,K+辅助酸性CO2RR转化为HCOOH的法拉第效率高达92.2%,部分电流密度达到−237.1 mA cm−2。更重要的是,由于抑制了碳酸盐的生成,在酸性条件下HCOOH的单程碳效率高达27.4%,超过了碱性条件下CO2RR的碳效率。
进一步的机理研究表明,K+可以通过减少质子覆盖在Bi催化剂表面上改造局部微环境,以抑制竞争性HER并产生局部相互作用来稳定*OCOH中间体,从而在强酸性介质中促进高效率的CO2转化为HCOOH。
此外,研究人员还探究了其它碱金属离子对酸性CO2RR的影响。结果表明,典型的阳离子,例如Li+和Na+,亦能促使CO2在强酸中高选择性地转化为HCOOH,而HCOOH部分电流密度则随着阳离子尺寸的增加而明显增加。因此,以上结果证实,利用碱金属阳离子调节酸性介质中电催化反应的微环境是推动CO2转化为目标产品的一般策略。
Theory-Guided S-Defects Boost Selective Conversion of CO2 to HCOOH over In4SnS8 Nanoflowers. ACS Catalysis, 2023. DOI: 10.1021/acscatal.2c05957
-
碘乙烷-D5_IODOETHANE-D5_CAS:6485-58-1
2025-04-25
-
1,4-二溴苯-D4_1,4-Dibromobenzene-d4_CAS:4165-56-4
2025-04-25
-
苯甲酰胺-15N_Benzamide-15N_CAS:31656-62-9
2025-04-25
-
苯甲醇-D5_Benzene-2,3,4,5,6-d5-methanol_CAS:68661-10-9
2025-04-25
-
溴乙烷-D5_BROMOETHANE-D5_CAS:3675-63-6
2025-04-25
-
滴滴涕-D8(DDT-D8)_2,4′-Dichlorodiphenyltrichloroethane-d8_CAS:221899-88-3
2025-04-25
-
辛酰辅酶A_Octanoyl coenzyme A_CAS:1264-52-4
2025-04-25
-
E-4-乙酰氨基-3’,4′-亚甲二氧基二苯乙烯_E-4-acetamido-3′,4′-methylenedioxydiphenylethylene_CAS:2025317-27-3
2025-04-25
-
乙基葡糖苷酸(铵盐)_ethyl glucuronide_CAS:913255-98-8
2025-04-25
-
丙二醇二醋酸酯PGDA_CAS:623-84-7
2025-03-26
-
5,7-二甲氧基-2-(3-((4-氧代-3,4-二氢酞嗪-1基)甲基)苯基)喹唑啉4(1H)-酮_5,7-dimethoxy-2-(3-((4oxo-3,4dihydrophthalazin-1yl)methyl)phenyl)quinazolin4(1H)-one _CAS:3037993-97-5
2025-03-26
-
双(2-乙基己基)次膦酸_CAS:13525-99-0
2025-02-28
-
甲基二苯基膦硫化物_Methyldiphenylphosphine sulfide_CAS:13639-74-2
2025-01-10